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Abstract: Our research introduces a novel seventh-order iterative method specif-
ically designed to address nonlinear equations having multiple roots. Inspired by
the pioneering work of Sharma et al. (2019), our approach represents a signifi-
cant advancement in computational techniques for solving complex mathematical
problems. Through rigorous convergence analysis, we establish that our proposed
method achieves seventh-order convergence. To evaluate its efficacy, we conduct ex-
tensive numerical experiments utilizing a range of nonlinear equations encountered
in applied physics domains, including Planck’s Law, electron trajectory problems,
and Newton’s beam designing problem. Our findings reveal that the suggested
method consistently outperforms other existing techniques of similar nature avail-
able in the literature. Notably, our method demonstrates exceptional convergence
behavior even in challenging scenarios involving multiple roots, indicating its suit-
ability for solving complex problems encountered in applied physics and related
fields. This superiority is evidenced by its ability to efficiently converge to solu-
tions even in scenarios involving multiple roots. The practical implications of our
research extend to various fields reliant on nonlinear equation.
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1. Introduction

Problems in science and technology are typically of mathematical nature, lead-
ing to the linear and nonlinear equations. The considered scientific problems are
solved by finding solutions to these equations. It is difficult to find solutions for
such nonlinear equations like f(x)=0. If the function’s initial m — 1 derivative
disappears at v and f(™ () # 0, and the root v is a multiple root with multiplicity
m, the situation is more severe.

Since solving such problems using direct methods is not dependable. Iterative
processes are therefore necessary. For the purpose of computing multiple roots
with known multiplicity m, the modified Newton technique [12] is widely utilized
and is given as:

f(x)
filae)

This is a one-point method with second order of convergence.

Intense research is being done to create new iterative techniques with better
order of convergence. In his outstanding book, J.F. Traub explains why multi-
point iterative methods are preferable to one-point iterative methods (see [16]). He
underlines that using these techniques to approximate the roots of nonlinear equa-
tions is more effective. In order to improve the convergence of iterative methods
for multiple roots, some researchers, such as Dong [2, 3], Neta et al. [9-11, 18], and
Li et al. [7, 8] have developed iterative methods with higher order of convergence.
Some of these methods are of order three [2, 3, 10, 18], while others are of order
four [7-9, 11].

Furthermore, in recent years researchers are working to develop sixth and sev-
enth order methods, for instance, Geum et. al. [4] developed sixth order methods,
Sharma et. al. [14] developed seventh order methods. Recently, Kumar et. al.
[6] has given a three step seventh order scheme with two weight functions utiliz-
ing 2f and 2f’ evaluations. Inspired by the ongoing work in this direction, we
here introduce yet another three step iterative scheme composed of three weighted
Newton steps having three univariate weight functions based on 3f and 1f’ eval-
uations. The scheme is presenting more generalized form and it has been proved
that the presented scheme outperforms the existing schemes in terms of accuracy
and computing efficiency.

This manuscript is structured as follows: The Taylor series expansion was used

(1)

Tip1 = Ty — M
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to analyze the scheme’s convergence in Section 2. In Section 3, approaches found
in the literature are cited for comparison and the numerical findings are examined.
Basins of attractions are presented for visual comparison in Section 4. The paper
ends with the conclusion in Section 5.

2. Convergence Analysis of Scheme

We create the iterative scheme and go over the requirements to derive seventh-
order procedure from it using the computer programming system Mathematica
[20]. We consider the iterative scheme:

— o —m f(zy)
Yt = Ty f,(xt>7
= — mu u f(a:t)
2t =Ut tH( t) f/(xt)7 (2)

f(x)

Tpp1 = 24 — mutP(ut)G(vt)m,
where the weight functions H, P,G : C — C are univariate analytic functions given

by

H H
H(u;) ~ Hy + Hyug + TQuf + é’uf +O(ub), (3)
P. P.
P(u;) = Py + Pyu; + guf + Eguf + O(uf) and (4)
G G
G(vy) = Gy + G + 72113 + fuf’ +0(v}), (5)

1 1

where u; = <]{Ez’3> T = (%) "
Theorem 2.1. Let us consider an analytic function f: C — C with t = v (say)
as a multiple root having multiplicity m > 1. The presented scheme (2) converges
to order seven, if the considered weight functions satisfy the following conditions:
Go=0,G1=5,G =%, H=0, P =2F), P,=2h,.
Proof. We will investigate specific conditions to ensure that the suggested plan
reaches the required order of convergence by using the idea of Taylor series expan-
sion. To complete the extensive computations, the Mathematica software [20] is
used.

Assume that for ¢ iteration, the error is e, = z; — . Following the Taylor’s
series expansion about v, we may expand f(x;) and f’(x;) to obtain

(m)
flzy) = ! mp)e;”(l + cre; + o€l + czel + caef +csed +cgel +...), and  (6)
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(m)
' (z¢) = / mfy) e M (m+(mA41)ere+(m+2)cae; +(m+3)csep +(m—+4)csef +. . ),

(7)

m' f('m+k) (

TR 0 , for kK € N.
By inserting the above expression from Eq. (6) and Eq. (7) in the first sub-step
of scheme (2) we obtain:

1 —(m+ 1) 4 2mey ;
eytzyt—vzae%( m+ et ) ﬁZ@ o), (8)

m2

where ¢, =

where ¢; = ¢;(m, c1,¢9,...,¢8),1=0,1,2,..., are given in terms of m, ¢y, ¢, . . . , cs.
Expressions of ¢; that are exceedingly long are not written directly for the sake
of brevity. Long expressions that we receive from the upcoming computations will
likewise not be written down.
With the help of Taylor’s series expansion and Eq. (8). we have

(m)
fly) = / mfy) ey (1+ crey, + cael, + cse), + caey, + ... ). 9)

By using Eq. (6) and Eq. (9), we get following equation:

"y (f(yt))m _ crés n (2m02 — (m + 2)01)€t + Zm i+2 4 O(ef), (10>

f(xy) m m2 —

where 7; = n;(m, c1,¢9,...,¢8),1=10,1,2,.....
Now, inserting Eqs.(3), (6) - (10) in the second sub-step of scheme (2)

e (- _ 2 _ 3
= _a(Ho —1)e; N (—2mceo(Ho — 1) + 2 (—m . 1+ (m+3)Hy — Hy))e; O,

m m

(11)

On substituting Hy = 1 and H; = 2 in above expression, we obtain the optimal
fourth order convergence.

€2

(3(m+9 — Hy) —2mcico) e
2m3

Zm 31 0(eh), (12)

eztzzt—vz

where ¢; = ¥;(m,c1,c9,...,¢58),1=0,1,2,...
Again, using Taylor’s series expansion for f(z;), we get

1) m

- (1 + ey, + cze + 636 + 646 +...). (13)

f(z) =
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Employing Eq. (9) and Eq. (13), we get

-

w::(fwﬁ)m::( 2(m + 9 — Hy) — 2mey) €2

) 2 + Z e +0(e),  (14)

where p; = p;(m, cq, ¢, ..., ).
Using Egs.(4)-(14) in proposed scheme (2) and simplifying, we obtain:

C1G0P0 o2

erp1 = :+ Z Die™ + 0(e?), (15)

where Dz = Dz(m, C1,Coy ... ,Cg).
In order to achieve seventh order convergence, substitute Gy = 0, the resultant
equation is given by:

(—2m01C2(G1P0 — 1) + (C“;’(HQ(Glpo — 1) + (m + 9)<(G1P0 — 1)))
2m3

et +0(ed),
(16)
Proceeding in same way, on substituting G; = %0’ Gy = P%, Hy =0, P, = 2P,
P, = 2F,, in the given order, we end up with desired error equation.
Hence, the equation reduces to

€41 = —

(9 + m)e? — 2mes) < —12meyPy + (30 + 6m + Hy) Py p3)> 7
+O(ed).
(17)
The expression in Eq.(17) shows that the presented scheme (2) obtains the
desired seventh order of convergence. The scheme utilizes only four functional
evaluations i.e., f(zy), f'(x¢), f(y:) and f(z) per iteration.
On substituting Py = 1 and Hs = 0 , the proposed scheme in its final form, is

Gl = 12mb P,

given as:
" :xt—mf(xt)
f(@)’
2z =y — mug(1l + 21@%, (18)
Top1 = 2 — mug(1 + 2uy 4+ ud) (v, +v )ff/((xt))

This proposed method is considered as PM in the rest of the paper.
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3. Numerical Experimentation

For the purpose of comparison, we consider the following sixth and seventh order
methods present in the literature to compare with the proposed method. The pro-
gramming package Mathematica [20] is used for performing all the computations.
For numerical testing, the stopping criterion is considered as |, — x| < 10735,
All computations are done on Intel(R) Core(TM) i3-7020U CPU @ 2.30 GHz with
4.00 GB RAM. Here, n denotes the number of iterations, Columns 3, 4 and 5 rep-
resent error estimations, penultimate column shows the Computational Order of
Convergence (COC) [19]

log|(zi12 — )/ (41 — )
coc = log|(zes1 — )/ (ze — )|

and the last column deals with CPU time. The CPU time is expressed in seconds.
Method proposed by Geum et al. [4], named as GM

o _mf(xt)
Y=y f,(xt)a
— —m, u u2 f(xt)
2 =Ty (1+u +2 t)f'(fﬂt)’ (19)
f(x)

wep=r — (1+u + 2u] + (14 2Ut)Ut)f,(x 3
t

1 1
: (S ()™
with u; = (f(xt)) , U= (f(xt)) .
Method given by Sharma et al. [15], denoted as SM;
f ()

=r; — m—=,
Y=t f’(CEt)

T
Zt:yt — mut<1 + Ut — u?) ;/ixt)), (20)
t
Xz
Top1—2¢ — m'Ut(l + 2Ut + wt) .;,((xt))7
t
1 L I
with u, = (%)m, vy = (;E;g) " and wy = (;E;g)m :

Method discussed by Sharma et al. [15], designated as SMy
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(33t)

s '(95t)
_ f(xe)
2=y — muy (1 + uy — ) Fi(z) (21)
¢
1 T
Trp1=% — M 2Ut + 1 wt) /(<xtt))
)\ ™ () ) ™ () \ ™
. . f Yt m o f 2t m f 2t m
with u;, = (f(xt)) , Uy = (f(:m)) and w; = <f(yt))
Method by Kumar et al. [6], named as KM,
. f(xt)
e f/(xt)’
P p—— 1+ ) Sz (22)
e ) T
— 1wy m?—2m—1 ,\ f(z)
— 1+ =20 (142 .
= m( T u> ( T ) ) F/(z)

Another method by Kumar et al. [6], designated as K M,

(l’t)
f(@e)’

n=y — mut<1 Smu; )_2 f(x) (23)
(

Y=oy —

Tom—12) Fla)

1 2_929m—1
1+_ﬁ 14 2u + = E 22 f(z)
m(m — 1)

Ti41=2 — MYt

f(we)’

m U

1
with u; = (J’:,E g) and v, = (;é;’g) ",

Consider the following real-world physics’ problems and academic problems for
the sake of numerical experiments. Each Table after example demonstrates the
superiority of proposed method PM in contrast with other methods existing in
literature.

Example 1. We first consider the Newton’s Beam designing problem (see [21]).
Consider figure 1 the beam DB is of length a unit lying on one of the edge of cubical
box of side 2 units which lies on the floor adjacent to wall. The one end say D of
beam touches the wall (y-axis) and another end B touches the floor (z-axis). The
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Figure 1: Newton’s Beam problem.

problem here is to calculate the distance between foot of wall and the point B i.e.,
distance OB, where O is the origin. Here, we assign BC = y and AB = z, now
there is need to calculate the distance x + 2 units (see Fig. 1). In triangles ACAB
and ADEC are similar. Therefore

= (24)
Y

Since A CAB is a right angle,

4 3 2y, .2 _

z* +4x° 4+ (8 —a’)x* + 162+ 16 =0 (25)
For a? = 32, we get the nonlinear equations

fi(z) = 2* + 42 — 242 4 162 + 16,
with z = 2 as the root having multiplicity 2. Taking initial guess o = 3 to find
the root. Comparison of different methods with respect to fi(z) is given in Table

1.

Table 1: Comparison for fi(z) = z* + 42% — 2422 + 162 + 16

Method n  |zg — 1] |z — 22 |xg — 23] COC CPU time
o = 3

GM 4 239x107% 578x10718 1.15x 107105  6.00 0.047
SM, 4 113x1073 6.52x1072 141 x 1077  7.00 0.062

S M, 4 926x107* 1.63x1072 8.75x 107162 7.00 0.062
KM, 4 690x107% 1.00x1072 6.73x1072  6.00 0.047
KM, 4 249x107°% 1.29x 10717 257 x 107103 6.00 0.047
PM 4 6.05x107* 236x1072% 3.28x107'" 7.00 0.035
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Example 2. Next, we consider the Electron Trajectory problem [5]

1

5
fa(x) = (93— écosx%— %) ,

here, the root is -0.30909327 , m=5 and xy = 1.

5
Table 2: Comparison for fy(z) = (x - %COSI’ + g)

Method n  |zg — 1| |zg — 22| |zg — 23] COC CPU time
Ty = 6

GM 4 944x107% 3.14x107'* 4.36 x 1083 6.00 0.453

S M, 4 512x1073% 4.14x107'® 942 x107'**  7.00 0.391

S M, 4 4.02x1073% 7.66 x 1071 7.07x107'?9  7.00 0.437
KM, 4 4.02x1073 1.46 x 10719 3.72 x 10738 6.07 0.875
KM, 4 497x1072 266 x107'6  6.36 x 1079 6.00 0.516
PM 4 323x1073 442x10720 3.92x 1078 7.00 0.359

277

(26)

Example 3. The spectral density of electromagnetic radiations released by a black
body at a specific temperature and at thermal equilibrium can be found using the

Planck’s radiation equation [1],

8mchy®
G(y) = ch 9
evkT — 1

where ¢, h, y, k denote the speed of light in the vacuum medium, Planck’s
constant, the radiation wavelength, the Boltzmann constant and T stand for the

Table 3: Comparison for f3(z) = (

e“"ﬁ—l—{—E

5

'

Method n  |zo — 1] |zg — 29| |zg — 23] COC CPU time
o = 3

GM 4 1.93x1077 581 x107% 4.23x10728%  6.00 0.312
SM, 4 834x107? 219x107% 1.88x107%2 7.00 0.406

S My 4 749x1072 1.04x107% 1.01 x 107%®  7.00 0.359
KM, 4 599x1072 8.78x107% 1.28 x 107463  7.00 0.359
KM, 4 295x107% 1.86x107%2 1.17 x 10737  6.00 0.359
PM 4 469%x1079 1.74%x107% 1.68 x 107468  7.00 0.359
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black body’s absolute temperature respectively. We arrived at the following equa-

tion to assess the wavelength y, which yields the maximum energy density G(y).

Additionally, the nonlinear equation is created by putting z = y‘;chT, we get

folz) = (ﬂ 1+ %)3

The precise root of multiplicity m = 3 is v = 4.965114231744428.

Example 4. Let us consider the following academic problem for further compari-
son.

falw) = (a* = 1),

The desired root of given function is 1 with multiplicity 5. We assume the initial
root as 2.

Table 4: Comparison for fy(z) = (z* —1)°

Method n  |zg — 1| |zg — 29| |zg — 23] COC CPU time
o = 3

GM 5 1.85x1073% 7.59x 107 3.68 x 1078  5.999 0.110
SM; 5 6.54x107% 522x10720 1.08 x 10732 6.999 0.031

S My 5 278 x107* 1.33x10722 742x10°'%1  6.999 0.078
KM, 5 3.38x107% 1.07x10722 1.08x107% 1.14 0.171
KM, 5 4.19%x107% 4.06 x 107 3.36 x 107199 6.00 0.093
PM 5 156 x10™% 6.11 x 107%®° 8.46 x 10~1%8  7.000 0.030

Example 5. We further take up the following test function whose multiple root
is 2 with multiplicity 50:

fs(@) = ((z = 1)° = 1)™.

To begin with, we consider 3 as an initial root.
Example 6. Next we have

fo(z) = (z* — 22 +1)%.

The test function has 1 as a multiple root with multiplicity 6. The chosen initial

approximation is 3.
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Table 5: Comparison for fs5(z) = ((z —1)% — 1)

Method n

|z — 21 |xs — xo| |xg — 3| COC CPU time

To = 3

GM 5 1.08x107° 4.17x107%° 140 x 1071  6.00 0.093
SM; 5 947x1077 6.44 x107%1 4.32x 107280  7.00 0.093
SM, 5 2.84x1077 143 x10™* 1.14 x1073%  7.00 0.11
KM, 5 4.27x107% 1.42x107° 6.18 x 1073%¢  7.00 0.093
K M, 5 1.70x 1077 1.29x 1074 250 x 107239 6.00 0.078
PM 5 7.36x107% 292x107% 450 x 10733  7.00 0.078

Table 6: Comparison for fg(z) = (z* — 22* + 1)3

Method n

|z — 21 |xs — xa| |xg — 3| COC CPU time

o = 3

GM 5 897x1077 4.90x 10737 1.40 x 1072  6.00 0.062
SM; 5 299x107% 3.67x107%% 1.51 x 107367  7.00 0.062
SM, 5 852x107? 5.52x107°57 2.64x107%*  7.00 0.062
KM, 5 1.28x107? 5.33x107% 7.69 x 107%%%  7.00 0.141
KM, 5 3.63x107% 7.59x107% 6.30 x 107272 6.00 0.046
PM 5 1.76x107° 2.50x 10762 288 x 1072 7.00 0.046

Ultimately, the numerical experiments validate the theoretical findings, demon-
strating the robustness and efficiency of the suggested seventh order approach.
The suggested approach PM, in contrast to the other methods under discussion,
achieves the theoretical order of convergence with more precision and less com-
putational time, as shown by the Table 1-6. For high-precision computation, the
proposed scheme is better since they can also produce high-precision solutions.

4. Basins of Attraction

The graphical tool, Basins af attraction, is used to compare the the methods
under consideration visually. We a complex function f(z) = (2°—1)3, 2 € L, which
has five complex roots with multiplicity 3 each.

Here, we considered a rectangular mesh L = [-5, 5] x [-5, 5] C C. Every root
of f(z) = 0 is contained in this region. Let the initial point be 2, € D.
MATHEMATICA software [20] is used for generating high quality basins. Color
shades are changing from light to dark as per number of iterations, darker tone
suggests that the root is converging to desired root as shown in Figure [2]. If initial
root fails to converge to the desired root, these points are shaded in black color.
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2(d) KM,

2(e) KM, 2(f) PM
Figure 2: The visual comparion of methods using Basins of attraction for f(z) =
(2°—=1)3,z2z€L

(13, 17].

The pictures in Figure 2 present the basins of attraction for different methods.
We observe the proposed method PM has an edge over other methods. On careful
study, the behavior and suitability of any method can be judged and particular
method can be used depending upon requirements.

5. Conclusion

The iterative procedure described in this manuscript uses four functional evalua-
tions per iteration to achieve seventh order of convergence. Moreover, the presented
method PM demonstrated excellent performance for well-known physics problems
along with academic problems. In addition, Tables 1-6 illustrate that the method
PM that is being provided yields exceptionally good results when compared to
other approaches that are being studied in terms of COC, elapsed CPU time, and
least estimated error.
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